更多>>人气最旺专家

永井诚

领域:京华网

介绍:听取审议了《残疾人保障法》、《人口与计划生育法》、《义务教育法》贯彻执行情况的报告,指出了法律法规实施中存在的问题和差距,提出了加强和改进相关工作的意见建议,对进一步推进依法治区进程,具有较强的指导性,有力促进了法律法规在我区的贯彻实施。...

凝儿

领域:新浪中医

介绍:可口可乐、相机、乒乓球、百事可乐、乒乓球拍、面包、打印机、蛋糕、墨盒、胶卷  判断下列哪些商品属于互补商品,哪些属于互为替代品?互为替代品:可口可乐与百事可乐面包与蛋糕互补商品:乒乓球与乒乓球拍打印机与墨盒 相机与胶卷比眼力!一、对生活消费的影响二、对生产经营的影响利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅

本站新公告利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅
8sy | 2019-01-17 | 阅读(644) | 评论(816)
中文摘要中文摘要摘要:钢铜石墨复合板不但具有钢板的高强度及优秀的力学性能的优点同时具有铜石墨复合材料良好的导热性、耐磨性及高温润滑性等优点,是颇为理想的高温轴瓦材料。【阅读全文】
利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅
abc | 2019-01-17 | 阅读(104) | 评论(781)
冉启佑【41,高博禹,彭仕宓‘51将它分为油藏精细描述技术等6个方面。【阅读全文】
99o | 2019-01-17 | 阅读(581) | 评论(149)
PAGE3.课后篇巩固探究                A组1.已知某线性规划问题中的目标函数为z=3x-y,若将其看成直线方程,则z的几何意义是(  )A.该直线的截距B.该直线的纵截距C.该直线的纵截距的相反数D.该直线的横截距解析由z=3x-y,得y=3x-z,在该方程中-z表示直线的纵截距,因此z表示该直线的纵截距的相反数.答案C2.目标函数z=x-y在2x-yA.(0,1)B.(-1,-1)C.(1,0)解析可以验证这四个点均是可行解,当x=0,y=1时,z=-1;当x=-1,y=-1时,z=0;当x=1,y=0时,z=1;当x=,y=时,z=0.排除选项A,B,D,故选C.答案C3.若变量x,y满足约束条件x+y≤3,x-y≥-有最大值无最小值有最小值无最大值的最小值是的最大值是10解析由z=4x+2y,得y=-2x+.作出不等式组对应的平面区域,如图阴影部分所示.平移直线y=-2x,当直线y=-2x+经过点B(0,1)时,直线y=-2x+在y轴上的截距最小,此时z最小,且zmin=2.当直线y=-2x+经过点C(2,1)时,直线y=-2x+在y轴上的截距最大,此时z最大,且zmax=4×2+2×1=10.故选D.答案D4.若直线y=2x上存在点(x,y)满足约束条件x+y-3≤0,A.-解析满足约束条件的平面区域如图中的阴影部分所示,由y=2x,x+y-3=0得交点P(1,2).答案B5.已知实数x,y满足约束条件x-y+4≥0,x+y解析因为z=2x+y,所以y=-2x+z.不等式组满足的平面区域如图阴影部分所示.平移直线2x+y=0,由图形可求得z=2x+y的最小值是-2.答案-26.已知变量x,y满足2x-y≤0,解析作出可行域,如图阴影部分所示.由图知,目标函数z=x+y-2在点A处取得最大值.易知A(1,2),故zmax=1+2-2=1.答案17.铁矿石A和B的含铁率a、冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:ab/万吨c/百万元A50%13B70%某冶炼厂至少要生产万吨的铁,若要求CO2的排放量不超过2万吨,则购买铁矿石的最少费用为     百万元.解析设需购买铁矿石Ax万吨,铁矿石By万吨,购买费用为z,则根据题意得到的约束条件为x≥0,y≥0,+≥,x+≤2,目标函数为z=3x+答案158.导学号04994076已知S为平面上以A(3,-1),B(-1,1),C(1,3)为顶点的三角形区域(含三角形内部及边界).若点(x,y)在区域S上移动.(1)求z=3x-2y的最值;(2)求z=y-x的最大值,并指出其最优解.解(1)z=3x-2y可化为y=x-z2=32x+b,故求z的最大值、最小值,相当于求直线y=x+b在y轴上的截距b的最小值、最大值,即b①如图①,平移直线y=x,当y=x+b经过点B时,bmax=,此时zmin=-2b=-5;当y=x+b经过点A时,bmin=-112,此时zmax=-2b=11.故z=3x-2y的最大值为11,最小值为-5(2)z=y-x可化为y=x+z,故求z的最大值,相当于求直线y=x+z在y轴上的截距z的最大值.如图②,平行移动直线y=x,当直线y=x+z与直线BC重合时,zmax=2,此时线段BC上任一点的坐标都是最优解.②9.甜柚和脐橙是赣州地区的两大水果特产,一农民有山地20亩,根据往年经验,若种脐橙,则每年每亩平均产量为1000千克;若种甜柚,则每年每亩平均产量为1500千克.已知脐橙成本每年每亩4000元,甜柚成本较高,每年每亩12000元,且脐橙每千克卖6元,甜柚每千克卖10元.现该农民有120000元,那么两种水果的种植面积分别为多少,才能获得最大收益解设该农民种x亩脐橙,y亩甜柚时,能获得利润z元.则z=(1000×6-4000)x+(1500×10-12000)y=2000x+3000y,其中x,y满足条件x+y当直线y=-x+z3000经过点B组                1.若变量x,y满足约束条件x+y≤8,2y-x≤4,x≥0,解析画出可行域,如图阴影部分所示.由图可知,当直线y=x5+z5经过点A时,z有最大值;经过点B时,z有最小值.联立方程组x+y对x+y=8,令y=0,则x=8,即B(8,0),所以a=5×4-4=16,b=5×0-8=-8,则a-b=16-(-8【阅读全文】
wn7 | 2019-01-17 | 阅读(765) | 评论(155)
 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂【阅读全文】
ugx | 2019-01-17 | 阅读(348) | 评论(908)
现汇报如下一、自觉加强理论修养,不断提高思想素质做为一名共产党员,政治合格、素质过硬至关重要。【阅读全文】
lr8 | 2019-01-16 | 阅读(368) | 评论(265)
在所领导的带领下,我参加了草坪绿化维护、1025警报试鸣、全国防护体系会议接待准备工作,以昂扬的斗志尽情展现疏散所的精神风貌;在办室干部的指导下,我完成了准军事化汇编、目标管理汇编、政治思想汇编等一系列办室工作,努力当好办室的参谋与助手。【阅读全文】
gxi | 2019-01-16 | 阅读(210) | 评论(40)
请设计实验探究控制眼色的基因在X、Y染色体上还是在X染色体上,写出实验思路并预测结果及结论。【阅读全文】
sol | 2019-01-16 | 阅读(904) | 评论(588)
这次教育活动,是非常必要和及时的,它对于全党说,保持中国共产党的性质不变,保证党的纲领,党的路线方针、政策的执行落实具有极其重要意义;对于加强、完善党的领导,巩固我党的执政地位,带领全党全国人民沿着中国特色社会主义道路前进,建设更高档次的小康社会具有极其深刻的意义。【阅读全文】
利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅,利来国际app旗舰厅
6vw | 2019-01-16 | 阅读(535) | 评论(788)
11月29日电(来源:路透社)据统计,爱沙尼亚的人均饮酒量为每年升纯酒精。【阅读全文】
gxn | 2019-01-15 | 阅读(525) | 评论(476)
(二)结合实际,加强相关业务知识的学习。【阅读全文】
7jl | 2019-01-15 | 阅读(575) | 评论(29)
这是一种(填“直接”或者“间接”)测量法。【阅读全文】
q5v | 2019-01-15 | 阅读(411) | 评论(837)
MEMS技术的发展实现了半导体集成电路、功能器件以及机械构件在微尺度上的集成。【阅读全文】
tam | 2019-01-15 | 阅读(963) | 评论(129)
”责编:王亚南【阅读全文】
ypw | 2019-01-14 | 阅读(861) | 评论(275)
例如他说“衣沾不足惜,但使愿无违”,又说“心远地自偏”,何等实在而玄远!他当然也读过许多书,尤熟于《庄子》,但他同那些玄学粉丝完全两路,根本不可同日而语。【阅读全文】
kwi | 2019-01-14 | 阅读(608) | 评论(355)
最终我认识到只有不断加强学习,积累充实自我,才能更好的立足本职岗位,高标准的完成好工作。【阅读全文】
共5页

友情链接,当前时间:2019-01-17

w66利来guoji 利来国际老牌w66 w66.com 利来国际娱乐老牌 w66利来国际
利来w66 w66利来国际手机app w66.com 利来娱乐 利来国际娱乐
利来国际官网平台 利来w66 w66.com 利来国际最给力老牌 利来w66
利来国际最给利的老牌 w66.com www.v66利来国际 利来国际w66备用 利来国际w66平台
深圳市| 抚顺县| 莲花县| 宿松县| 闽侯县| 阜宁县| 交口县| 卓资县| 革吉县| 九龙县| 莱芜市| 平乡县| 永善县| 蛟河市| 益阳市| 通辽市| 静海县| 同德县| 大竹县| 衡阳县| 民县| 扎鲁特旗| 德令哈市| 江口县| 井冈山市| 香港| 虞城县| 清流县| 宁德市| 涪陵区| 剑川县| 龙川县| 苍溪县| 太仓市| 西安市| 云安县| 郑州市| 类乌齐县| 福清市| 贺州市| 朔州市| http://m.36618539.cn http://m.60506823.cn http://m.52845816.cn http://m.38837001.cn http://m.88195232.cn http://m.27707185.cn